Control of the NOSEMA DISEASE with Natural Clinoptilolite Zeolite

A curative measure for honeybees, against Nosema ceranae

The western honey bee or European honey bee (Apis mellifera) is the most common of the 7–12 species of honey bee worldwide. (



Nosema ceranae

Nosema Ceranae is a microsporidian, a small, unicellular parasite. Along with Nosema apis, it causes the disease nosemosis, the most widespread of the diseases of adult honey bees. N. ceranae can remain dormant as a long-lived spore which is resistant to temperature extremes and dehydration.


This fungus has been shown to act in a synergistic fashion with diverse insecticides such as fipronil or neonicotinoids, by increasing the toxicity of pesticides for bees, leading to higher bee mortality. It may thus play an indirect role in colony collapse disorder. In addition, the interaction between fipronil and Nosema ceranae induces changes in male physiology leading to sterility (




Recent declines in honey bee populations including colony collapse syndrome, and an increasing demand for insect pollinated crops raise concerns about pollinator shortages. At the same time pesticide use and its subsequent exposure to pollinating bees has led to research suggesting that high levels of pesticides are building up in these honey bee colonies. (1)

Sub-lethal levels of pesticides may be interacting with the honey bee’s natural immune system to increase susceptibility to common pathogens. These finding are of great concern due to the high levels of pesticides found in honey bee colonies and the large amount of pesticides and their growing use. (1)

Research suggests that diet, parasites, disease and pesticides interact to have a stronger negative effect on managed bee colonies. Studies of managed bee colony wax show high levels and diversity of chemicals. Exposure to these chemicals increases susceptibility to and mortality from diseases including Nosema, a gut parasite. (1)

“The endoparasitic fungal infections of N. apis and N. ceranae adversely affect honey bee colony health, and can result in complete colony collapse.” (1)

Nosemosis type C is a disease caused by the microsporidium Nosema ceranae, a dominant and prevalent honeybee disease worldwide. Control of this disease is difficult. Fumagillin is an antimicrobial agent and has been the only widely used treatment for decades. However, fumagillin may actually exacerbate, rather than suppress the N. ceranae infection. (2)

There are many concerns about the potential use of antibiotics in the treatment of this type of disease in honey bees, due to the potential of formulating a resistance to the antibiotics, disease disassembly, possible relapses, and harmful antibiotic residues and metabolites in the honey. (2)

Control of this parasite is of great concern to beekeepers and farmers alike. For these reasons the need arises for natural remedies or antibiotic alternatives to help combat this problem.

Clinoptilolite Zeolite

The naturally occurring mineral clinoptilolite zeolite, taken as a dietary supplement, has already been proven to be a powerful antioxidant, to enhance general health and immune system conditions in humans and animals, improve the bio-efficiency of food and essential minerals, promote healing of skin damage, and may have anti-cancer & antimicrobial effects. (2)

An experiment was performed to examine the effects of adding dietary grade clinoptilolite zeolite, as a fine powder, to the development of N. ceranae in the honeybee midgut. Honeybees fed with sugar syrup supplemented with clinoptilolite had a reduced number of spores compared to the initial spore count. (2)

On average, Nosema Ceranae spore counts were reduced by up to 58% in under 40 days with just one feeding supplemented with clinoptilolite. (2)




Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae


Jeffery S. Pettis, Elinor M. Lichtenberg, Michael Andree, Jennie Stitzinger, Robyn Rose, Dennis vanEngelsdorp


Zeolite clinoptilolite as a dietary supplement and remedy for honeybee (Apis mellifera L.) colonies


Tlak Gajger1, J. Ribaric2, M. Matak1, L. Svecnjak3, Z. Kozaric1, S. Nejedli1, I.M. Smodis Skerl, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia 2Ministry of Agriculture, Zagreb, Croatia Faculty of Agriculture, University of Zagreb, Zagreb, Croatia 4Agricultural Institute of Slovenia, Ljubljana, Slovenia

Veterinarni Medicina, 60, 2015 (12): 696–705

doi: 10.17221/8584-VETMED





0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *